Index to Book Pages.

Reference Page Title or Contents
Book1_01
Book1_02
Book1_03
Book1_04
Book1_05
Book1_06
Book1_07
Book1_08
Book1_09
Book1_10
Book1_11
Book1_12
Book1_13
Book1_14
Book1_15
Book1_16
Book1_17
Book1_18
Book1_19
Book1_20
Book1_21
Book1_22
Book1_23
Book1_24
Book1_25
Book1_26
Book1_27
Book1_28
Book1_29
Book1_30
Book1_31
Book1_32
Book1_33
Book1_34
Book1_35
Book1_36
Book1_37
Book1_38
Solder, Alloy of Tin 60\% and Lead 40\%
Flux , Type Corrosive and Non Corrosive , Multi Core Solder
Wires, 3 Types Single Strand, Insulated, Multi strand Insulated
Resistance of lengths (Info only)
Tinning a Wire (How to do it)
Soldering into a bucket (How to do it.)
STRIPBOARD LOOM connecting to Vero Pins.
Cable identity marking techniques, Sleeving.
Extended Tinning, Joining Wires (How to do it)
37 Way Loom
Loom PARIS IN THE SPRING Triangle
STRIPBOARD LOOM The Specification (SPEC 06 Part 3)
STRIPBOARD LOOM The Specification (SPEC 23 \& 32)
Lead/Tin Solder Matrix + TIP Temps \& SWG
EDUCATION a few quotes
Colour Code inc. Wire code and Rhyme
Resistor colours and numbers calculations
Capacitors and Circuit Symbols
Crimping (How to do it.) Plus Definition
Inductors and Circuit Symbols
Numbers Giga to Pico (* 1000 , / 1000)
3 Digit numbers shorthand calculations
Transformers, Cells, Earth, Wires, Switch
Transistor, Diodes, IC's , Fuse, LDR , Pin 1
Loom skills, Solder Tag , Screen terminations.
Relationship analogy to water / Volts/pressure Flow/amps Resistance
Energy transfer, For the capacitor
PCB types and Component Mounting, Heat Sinks \& Shunts
KNOTS Clove Hitch and the Wire Plait
Coaxial Cable Connector BNC (How to do it.)
Veroboard Wiring routing analogy example and constraints example
Quality, ISO9000, Checking techniques 100%, Batch, Random.
Ohms Law, Voltage, Current, Resistance and Power
Ohms Law, Calculation summary.
Ohms Law, V/I=R , Power Triangles, Practice calculations
Ohms Law , Resistors in Parallel the Proof
Ohms Law, Resistors in Series the Proof
Loom skills, Continuous Knot Lacing.
Switches, Schematic presentation Symbols, Operation of the Relay

Index to Book Pages.

Reference Page Title or Contents

Book2_01 Ohms Law , Calculation practice Circuit
Book2_02
Book2_03
Book2_04
Book2_05
Book2_06
Book2_07
Book2_08
Book2_09
Book2_10
Book2_11
Book2_12
Book2_13
Book2_14
Book2_15
Book2_16
Book2_17
Book2_18
Book2_19
Book2_20
Book2_21
Book2_22
Book2_23
Book2_24
Book2_25
Book2_26
Book2_27
Book2_28
Book2_29
Book2_30
Book2_31
Book2_32
Book2_33
Book2_34
Book2_35
Book2_36

Index to Book Pages.

Reference \quad Page Title or Contents

Book3_01 Colour Code practice.
Book3_02 Resistor Circuit Practice calculations.
Book3_03 Using the Oscilloscope questions.
Book3_04 Digital Arithmetic practice.
Book3_05 Metric Multipliers Practice Calculations
Book3_06 Using the Oscilloscope questions (Number 2).
Book3_07 Capacitor Practice calculations.
Book3_08 Inductor Practice calculations.
Book3_09 Binary Arithmetic example and tests.
Book3_10 Resistor Practice calculations.
Book3_11 Number Conversion practice
Book3_12 Frequency / Period Conversion practice
Book3_13 Two input Gate Logic Practice questions
Book3_14 Multi input Gate Logic Practice questions
Book3_15 More Metric Multipliers Practice Calculations
Book3_16 Counters and Registers Practice.
Book3_17
Book3_18
Book3_19
Book3_20
Book3_21
Book3_22
Book3_23
Book3_24
Book3_25
Book3_26
Book3_27
Book3_28
Book3_29
Book3_30
Book3_31
Book3_32
Book3_33
Book3_34
Book3_35
Book3_36

Index to Book Pages.

Reference Page Title or Contents

Book4_01
Book4_02
Book4_03
Book4_04
Book4_05
Book4_06
Book4_07
Book4_08
Book4_09
Book4_10
Book4_11
Book4_12
Book4_13
Book4_14
Book4_15
Book4_16
Book4_17
Book4_18
Book4_19
Book4_20
Book4_21
Book4_22
Book4_23
Book4_24
Book4_25
Book4_26
Book4_27
Book4_28
Book4_29
Book4_30
Book4_31
Book4_32
Book4_33
Book4_34
Book4_35
Book4_36

Amplifier Theory
General Purpose Log Sheet
USEFUL.TXT (Computer or Maths information)
USEFUL1.TXT (Computer connection information)
Witness statement for external Diaries and Log Reports
General Outline and structure of a Project Report.
FIFO or Queue Handling Programming exercise.
Rights and Duty (A Question)
British Standard Proof Reading Symbols
Your main life Goals.
Basic CV letter layout.
Tools.Doc (Tools used on Vocational courses [Use, Health and Safety])
JOBQTY.Doc (Checking Quality of circuit boards etc. [How to do it])
Colour Test (with Life Style Analysis)

Index to Book Pages.

Reference	Page Title or Contents
Book5_01	Colour Code practice (With Answers).
Book5_02	Resistor Circuit Practice calculations (With Answers).
Book5_03	Using the Oscilloscope questions (With Answers).
Book5_04	Digital Arithmetic practice (With Answers).
Book5_05	Metric Multipliers Practice Calculations (With Answers)
Book5_06	Using the Oscilloscope questions (Number 2) (With Answers).
Book5_07	Capacitor Practice calculations (With Answers).
Book5_08	Inductor Practice calculations (With Answers).
Book5_09	Binary Arithmetic example and tests (With Answers).
Book5_10	Resistor Practice calculations (With Answers).
Book5_11	Number Conversion practice (With Answers)
Book5_12	Frequency / Period Conversion practice (With Answers)
Book5_13	Two input Gate Logic Practice questions (With Answers)
Book5_14	Multi input Gate Logic Practice questions (With Answers)
Book5_15	More Metric Multipliers Practice Calculations (With Answers)
Book5_16	Counters and Registers Practice (With Answers).
Book5_17	NUMBERS.ANS (Solutions to Book2_04 and Book2_05)
Book5_18	
Book5_19	
Book5_20	
Book5_21	
Book5_22	
Book5_23	
Book5_24	
Book5_25	
Book5_26	
Book5_27	
Book5_28	
Book5_29	
Book5_30	
Book5_31	Book2_01 Answers with complete solution
Book5_32	
Book5_33	
Book5_34	
Book5_35	
Book5_36	

SOLDER

An Alloy of

Tin $=\quad \underline{60 \%}$ \&
 $\underline{\text { Lead }}=\underline{40 \%}$

The Good Soldered Connection is :-

1. SHINY \& Bright
2. CONCAVE \& Smooth
3. No Spikes

Lumps, Bumps or Holes

FLUX

Two Types

Corrosive

(Used for Plumbing)
CLEANS
and also \downarrow
Non Corrosive
(Electrical Work)
AIDS HEAT TRANSFER PREVENTS OXIDISATION

MULTI - CORE SOLDER

How Do We
Apply the Flux ?

WIRES.

Three Types

Single Strand Bare.

Single Strand Insulated.

Multi-Strand Insulated.

	Information Only
0.20 mm	Strand $\cong 92.2 \Omega / \mathrm{Km} \cong 0.2 \mathrm{~A}$
0.28 mm	Strand $\cong 64.1 \Omega / \mathrm{Km}$
0.50 mm	Strand $\cong 36.0 \Omega / \mathrm{Km}$

TINNING.

1. Twist Wires , After removing the Insulation.
2. Coat wires with solder.
3. Ensure Individual strands can still be seen.
4. Ensure Insulation is NOT Damaged.
5. Cut wire to size.

JOB Specification 03

Solder Bucket

(1) Cut Wire to Size.

(2) Prepare Bucket
 with correct amount of Solder.

Only add extra
solder if bucket NOT pre-loaded

(3) Apply Heat.
(A) Ensure wire is correctly tinned.
(B) Ensure bucket is clean.
(C) Ensure wire is still visible after heat and solder have been applied.

STRIPBOARD Soldering.

Tapered end of pin

Wrap wire around Vero pin using pliers.

Rotate wire away from pin at appropriate point.

Insulation

Cut wire at indicated point and cut off excess wire using wire cutters.

Clamp wire around Vero pin with wiring pliers

Ensure final wire wrap is between 240° and 360°.

Finally Solder wire to Vero pin.

SLEEVING EXERCISE

1) All wires to remain parallel.
2) Bind with lacing cord using spot ties every 1.5 to 2 cms
3) Sleeves Read from END to MIDDLE and correct way up when viewed from LHS.

JOB 09 Specification.

Tinning and Joining Exercise.

Tinning Exercise

Tin to about 0.5 mm from Insulation

Use Various Wire Sizes

7/0.2 24/0.2
32/0.2
64/0.2

Joining Exercise

Tin to about 1 mm from Insulation

Tin to about 0.5 mm from Insulation

37 WAY LOOM.

All Wire Pin to Pin e.g. 1 to 1 etc.

1. Wire 37 Way. Tape Ends To Grip

Bundle Together.
2. Feed on Braiding, Tie with Waxed String.
3. Stretch , Release \& Trim Braid.
4. Feed on Heat Shrink for Both Ends.
5. Secure Soldered End.
6. Solder Free End, Adjust Length for even termination.
7. Secure Braiding and Heat Shrink.

STRIPBOARD LOOM

Notes

1) Pin 1 for both CON1 and CON2 is at the Top of the Veroboard. Use natural bend of wire and Full Eurocards size board.
2) Check Point to Point wire continuity. ie. Pin1 \rightarrow Pin 10, Pin $2 \rightarrow$ Pin 9 etc.
3) Keep Loom Symmetrical and regular. Mark the board with your Job Number and Name
4) Pins are 2 holes apart, centered on the board, Keep Pin rows 3 holes from the end of the board.

JOB Specification 06 part 3

RIBBON CABLE LOOM

1) Connect Pins $1,19,20$ and 37 first to set your anchor points and to prepare for even wire termination distribution.
2) Use Ribbon cable folded. Fan out wires approximately $4 \rightarrow 5 \mathrm{cms}$ from either end of cable.
3) All wires are Point to Point so that :Pin $1 \rightarrow$ Pin $19 \ldots$... Pin $20 \rightarrow \operatorname{Pin} 37$.
Note All Pins are facing each other as per the wiring schedule.

JOB Specification 23 \& 32

SOLDER.

LEAD	100\%	63\%	50\%	40\%	30\%	0\%
TIN	0\%	37\%	50\%	60\%	70\%	100\%
LIQUID	$\begin{aligned} & 450^{\circ} \mathrm{F} \\ & 232^{\circ} \mathrm{C} \end{aligned}$	$359^{\circ} \mathrm{F}$	$414{ }^{\circ} \mathrm{F}$	$\begin{aligned} & 460^{\circ} \mathrm{F} \\ & 238^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 496^{\circ} \mathrm{F} \\ & 258^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 620^{\circ} \mathrm{F} \\ & 327^{\circ} \mathrm{C} \end{aligned}$
SOLID	$450{ }^{\circ} \mathrm{F}$	$359^{\circ} \mathrm{F}$	$359^{\circ} \mathrm{F}$	$\begin{aligned} & 359^{\circ} \mathrm{F} \\ & 180^{\circ} \mathrm{C} \end{aligned}$	$359^{\circ} \mathrm{F}$	$620^{\circ} \mathrm{F}$
$\begin{array}{\|l\|} \hline \text { PLASTI } \\ \text { C } \\ \text { RANGE } \end{array}$	$0^{\circ} \mathrm{F}$	$0^{\circ} \mathrm{F}$	$55^{\circ} \mathrm{F}$	$101^{\circ} \mathrm{F}$	$137{ }^{\circ} \mathrm{F}$	$0^{\circ} \mathrm{F}$

The Above information is for background ONLY.
Soldering Iron Tip Numbers.

TIP No.7	$=700^{\circ} \mathrm{F}$	$>350^{\circ} \mathrm{C}$
TIP No.6	$=600^{\circ} \mathrm{F}$	$<350^{\circ} \mathrm{C}$

Note The Larger the TIP the Better the Heat Transfer.

SWG:: Standard Wire Gauge. Larger Number $=$ Thinner wires

EDUCATION

1) A RELATIVELY PERMANENT CHANGE IN ATTITUDE FOR THE REST OF YOUR LIFE.

2) LEARNING IS A VOLUNTARY PROCESS.

3) QUALITY BEFORE SPEED

BS 5750 ISO 9000 EU 9000

COLOUR CODE

Wire code	Value	Name	Link Word	Colour	Value
K				Pink	
B	0	Zero	Qerro	Black	0
N	1	One	Bun	Brown	1
R	2	Two	Shoe	Red	2
O	3	Three	Sree	Orange	3
Y	4	Four	Soor	Yellow	4
G	5	Five	Alive	Green	5
U	6	Six	Sex	Blue	6
P	7	Seven	Plaven	Violet Purple	7
S	8	Eight	Sate	Grey Slate	8
W	9	Nine	Lime Wime	White	9

Western.

Note The Wire code letters are for information purposes only.

RESISTORS.

Symbol

or

Value Measured in $\underline{\text { OHMs } \Omega}$

Values Type 1

Values Type 2

Tolerance
Brown $=1 \%=\mathrm{F}$
Green $=0.5 \%$
Blue $=0.25 \%$
Violet $=0.1 \%$

CAPACITORS.

Values in $\mu \mathrm{F}$
Values measured in
FARADS F

Value in pF

Symbols

CRIMPS.

A Mechanical Crushed Electrical Connection

QM Crimps Size 24
Using 7/0.2 Wire Stripped ONLY
DO NOT TIN

Tool
Side
View

3. Insert in the "INS" Jaws and clamp the Insulation to the Crimp.

INDUCTORS．

SYMBOLS

FERRITE Core

Values measured in HENRYS H

NUMBERS

10^9 One Thousand Million G Giga
10^6 One Million M Mega
10^3 One Thousand K Kilo
10^0 One Units
10^-3 One Thousandth m Milli
10^-6 One Millionths $\mu \quad$ Micro
10^-9 One Thousandth Millionth n Nano
10^-12 One Millionth Millionth p Pico
$1 \mathrm{~K}=1,000=1,000,000 \mathrm{~m}$Moving \uparrow times a 1000 , Moving \downarrow divide by 1000

THREE CHARACTER/DIGIT CODE

This is a common used shorthand.

This system uses the first two digits of a number and either a count of the number of zero's that follow the two numbers or a standard metric multiplier letter.

Example
$5600000 \quad$ Translates to $5,600,000$ or 5.6 million this can also be written as 5.6 M
Note that the decimal point could be easily missed or erased so the metric multiplier letter is used to replace the decimal point.
e.g. 5M6

Alternatively
$5600000 \quad$ translates to 5,6 and 5 zero's giving the three digit code 565

Number
$2700=$
$27000=$
$270000=$

3 Character
$2 \mathrm{~K} 7=272$
$27 \mathrm{~K}=273$
270 K or 0.27 M or M27

Examples

100Ω	Resistor	$=$	100		
10Ω	Resistor	$=$	10 R	or	10Ω
1Ω	Resistor	$=$	$1 \Omega 0$ or	1 R 0	
1000Ω	Resistor	$=$	1 K 0		
1000 pF	Capacitor	$=$	1 nF	or	102
$22 \mu \mathrm{~F}$	Capacitor	$=$	22μ		
2.2μ	Capacitor	$=$	$2 \mu 2$		

Circuit Symbols.

Transformer

Earth

Connecting
Wire

Note
The Join Dot

Battery

Switch
Chassis

Wires
Joined

Wires
Crossing

Circuit Symbols.

LOOMS.

Note that a PLUG $=\underline{\text { PINS }}$

Various methods of terminating a Screened Cable

The Solder Tag.

VOLTS Etc.

ENERGY TRANSFER.

PCB Printed Circuit Board.

KNOTS

The Clove Hitch

The Wire Plait

COAXIAL CABLE.

Side View of Cable.
End View of Cable.

VERO BOARD

Another View

QUALITY

The Quality System.
Consists of :-

ISO 9001
ISO 9002
The Processes.

Other Systems

BS5750
EU9000

Checking

Techniques

SampleBatchA Group of product Items
e.g. $\sqrt{\text { ITEMS }}$
100% Everthing (as per course)

OHMS LAW

$\mathbf{R}=\stackrel{\mathbf{V}}{---}=\begin{gathered}\text { VOLTAGE } \\ ----------- \\ = \\ \text { RESISTANCE }\end{gathered}$

Symbol
Measurement
Units

V	Voltage	Volts	V
I	Current	Amps	A
Ω	Resistance	Ohms	R

POWER

POWER $=$ VOLTAGE $* \quad$ CURRENT

$$
\mathrm{W}=\mathrm{V} * \mathrm{~A}
$$

Symbol	Measurement		Units	
V	Voltage		Volts	V
I	Current	Amps	A	
W	Power		Watts	W

RESISTORS

V1
---- $=$ R1

$$
\mathrm{R}(\text { total })=\mathrm{R} 2+\mathrm{R} 3
$$

$$
\mathrm{V} 4=\mathrm{V} 2+\mathrm{V} 3
$$

$\mathrm{I} 5=\mathrm{I} 3+\mathrm{I} 4$

CALCULATIONS

Exercises

1) Define W in terms of R
2) What is the resistance of two lamps in Parallel 60W +100 W in a mains circuit.

Mains Voltage is assumed to be 240vac.

PR00F.

This Gives

Therefore If $\quad \mathrm{I}=\mathrm{I} 1+\mathrm{I} 2$ THEN

PROOF.

As "I" is Common through both R1 \& R2

$$
\therefore \quad \mathbf{V}=\mathbf{V} 1+\mathbf{V} 2
$$

$$
\mathbf{V} 1=\mathbf{I} \quad * \mathbf{R} 1
$$

$$
\mathbf{V} \mathbf{2}=\mathbf{I} \quad * \mathbf{R} \mathbf{2}
$$

$$
\mathbf{V}=\mathbf{I} \quad * \mathbf{R}(\text { Total })
$$

$\therefore \quad \mathbf{I} * \mathbf{R}($ Total $)=\mathbf{I} * \mathbf{R} \mathbf{1}+\mathbf{I} * \mathbf{R} \mathbf{2}$
Now divide through by "I" gives
$\mathbf{I}^{*} \mathbf{R}($ Total $)=\mathbf{I} * \mathbf{R} \mathbf{1}+\mathbf{\Psi} \mathbf{R} \mathbf{2}$
giving :-
$\mathbf{R}($ Total $)=\mathbf{R} 1+\mathbf{R} 2+\ldots$ etc

LOOM LACING KNOTS.

1. Start with Clove Hitch Plus and Extra Hitch.
2. Lace Bundle.
3. Lock Bundle with Reversed Lacing Knot.

SWITCHES \& RELAYS.

Contacts

$\underline{\mathrm{NO}}=\underline{\text { Normally }}$ Open.

Single Pole 3 Way

$\underline{\mathrm{NC}}=\underline{\text { Normally }} \underline{\text { Closed }}$.

2 Pole 2 Way (Ganged)

The Relay

