ReferencePage Title or Contents

Book1 01	Solder, Alloy of Tin 60% and Lead 40%
Book1_02	Flux, Type Corrosive and Non Corrosive, Multi Core Solder
Book1_03	Wires, 3 Types Single Strand, Insulated, Multi strand Insulated
	Resistance of lengths (Info only)
Book1_04	Tinning a Wire (How to do it)
Book1 05	Soldering into a bucket (How to do it.)
Book1 06	STRIPBOARD LOOM connecting to Vero Pins.
Book1 07	Cable identity marking techniques, Sleeving.
Book1 08	Extended Tinning, Joining Wires (How to do it)
Book1 09	37 Way Loom
Book1_10	Loom PARIS IN THE SPRING Triangle
Book1 11	STRIPBOARD LOOM The Specification (SPEC 06 Part 3)
Book1_12	STRIPBOARD LOOM The Specification (SPEC 23 & 32)
Book1_13	Lead/Tin Solder Matrix + TIP Temps & SWG
Book1_14	EDUCATION a few quotes
Book1_15	Colour Code inc. Wire code and Rhyme
Book1_16	Resistor colours and numbers calculations
Book1_17	Capacitors and Circuit Symbols
Book1_18	Crimping (How to do it.) Plus Definition
Book1_19	Inductors and Circuit Symbols
Book1_20	Numbers Giga to Pico (* 1000, / 1000)
Book1_21	3 Digit numbers shorthand calculations
Book1_22	Transformers, Cells, Earth, Wires, Switch
Book1_23	Transistor, Diodes, IC's, Fuse, LDR, Pin 1
Book1_24	Loom skills, Solder Tag, Screen terminations.
Book1_25	Relationship analogy to water / Volts/pressure Flow/amps Resistance
Book1_26	Energy transfer, For the capacitor
Book1_27	PCB types and Component Mounting, Heat Sinks & Shunts
Book1_28	KNOTS Clove Hitch and the Wire Plait
Book1_29	Coaxial Cable Connector BNC (How to do it.)
Book1_30	Veroboard Wiring routing analogy example and constraints example
Book1_31	Quality, ISO9000, Checking techniques 100%, Batch, Random.
Book1_32	Ohms Law, Voltage, Current, Resistance and Power
Book1_33	Ohms Law, Calculation summary.
Book1_34	Ohms Law, V/I=R, Power Triangles, Practice calculations
Book1_35	Ohms Law, Resistors in Parallel the Proof
Book1_36	Ohms Law, Resistors in Series the Proof
Book1_37	Loom skills, Continuous Knot Lacing.

Book1_38 Switches , Schematic presentation Symbols , Operation of the Relay

<u>Reference</u> Page Title or Contents

- Book2_01 Ohms Law , Calculation practice Circuit
- Book2_02 Ohms Law , Calculation practical Lamps Circuit
- Book2_03 Ohms Law , Calculation practical Speaker Circuit
- Book2_04 RESISTORS converting colours to numbers practice questions.
- Book2_05 Number converting to colours or three digits practice questions.
- Book2_06 NOTICE
- Book2_07 JOB procedure paperwork needed for personal evidence.
- Book2_08 Low Profile Soldering method (How to do it.)
- Book2_09 Soldering into a Shallow bucket (How to do it.)
- Book2_10 Soldering onto a Connector Pin (How to do it.)
- Book2_11 General Notes , Transistors , Diodes , Resistors
- Book2_12 General Notes , Capacitors , Inductor
- Book2_13 Variable Components Schematic Resistors , Capacitors , Inductors
- Book2_14 Numbers Giga to Pico Physical measurements in Electronics & domestic.
- Book2_15 Loom skills , BIG Looms building guidelines.
- Book2_16 Loom skills , Guidance and Hints building LOOM 03.
- Book2_17 PCB REPAIR Bridging Tracks (How to do it.) (JOB SPEC 54 Part 1)
- Book2_18 PCB REPAIR Lifted Tracks (How to do it.) (JOB SPEC 54 Part 2)
- Book2_19 Desoldering Buckets (How to do it.) (JOB SPEC 53)
- Book2_20 WIRE WRAPING MANUAL (How to do it.) (JOB SPEC 56)
- Book2_21 CAPACITOR Polarity recognition (Tant Bead)
- Book2_22 NVQ the Qualification Diagram Plus quote.
- Book2_23 TV Coaxial Cable Connector (How to do it.)
- Book2_24 Resistors Gold and Silver Multiplier Bands less than 10 ohms
- Book2_25 STRIPBOARD LOOM Soldering Links and Components (JOB SPEC 06 Part 2)
- Book2_26 Tinning Assessment Exercise. (JOB SPEC 03 Part 3)
- Book2_27 Metric / Imperial Conversions
- Book2_28 Phone & Jack Terminations (How to do it.)
- Book2_29 General Notes on IC's
- Book2_30 'F' Type Coaxial Cable Connector (How to do it.)
- Book2_31
- Book2_32
- Book2 33
- Book2 34
- Book2_35
- Book2_36

ReferencePage Title or Contents

- Book3_01 Colour Code practice.
- Book3_02 Resistor Circuit Practice calculations.
- Book3_03 Using the Oscilloscope questions.
- Book3_04 Digital Arithmetic practice.
- Book3_05 Metric Multipliers Practice Calculations
- Book3_06 Using the Oscilloscope questions (Number 2).
- Book3_07 Capacitor Practice calculations.
- Book3 08 Inductor Practice calculations.
- Book3_09 Binary Arithmetic example and tests.
- Book3_10 Resistor Practice calculations.
- Book3_11 Number Conversion practice
- Book3_12 Frequency / Period Conversion practice
- Book3_13 Two input Gate Logic Practice questions
- Book3_14 Multi input Gate Logic Practice questions
- Book3_15 More Metric Multipliers Practice Calculations
- Book3_16 Counters and Registers Practice.
- Book3_17 Book3_18
- Book3_19
- Book3_20
- Book3_21
- Book3_22
- Book3 23
- Book3_24
- Book3 25
- Book3_26
- Book3_27
- Book3_27 Book3_28
- DOOK5_28
- Book3_29
- Book3_30
- Book3_31
- Book3_32
- Book3_33
- Book3_34
- Book3_35
- Book3_36

ReferencePage Title or Contents

- Book4_01 Amplifier Theory
- Book4_02 General Purpose Log Sheet
- Book4_03 USEFUL.TXT (Computer or Maths information)
- Book4_04 USEFUL1.TXT (Computer connection information)
- Book4_05 Witness statement for external Diaries and Log Reports
- Book4_06 General Outline and structure of a Project Report.
- Book4_07 FIFO or Queue Handling Programming exercise.
- Book4_08 Rights and Duty (A Question)
- Book4_09 British Standard Proof Reading Symbols
- Book4_10 Your main life Goals.
- Book4_11 Basic CV letter layout.
- Book4_12 Tools.Doc (Tools used on Vocational courses [Use, Health and Safety])
- Book4_13 JOBQTY.Doc (Checking Quality of circuit boards etc. [How to do it])
- Book4_14 Colour Test (with Life Style Analysis)
- Book4_15 Book4 16 Book4 17 Book4 18 Book4_19 Book4 20 Book4_21 Book4_22 Book4 23 Book4_24 Book4 25 Book4 26 Book4 27 Book4 28 Book4_29 Book4_30 Book4_31 Book4 32
- Book4_33 Book4_34
- Book4 35
- Book4_36

Reference Page Title or Contents

Book5_01	Colour Code practice (With Answers).
Book5_02	Resistor Circuit Practice calculations (With Answers).
Book5_03	Using the Oscilloscope questions (With Answers).
Book5_04	Digital Arithmetic practice (With Answers).
Book5_05	Metric Multipliers Practice Calculations (With Answers)
Book5_06	Using the Oscilloscope questions (Number 2) (With Answers).
Book5_07	Capacitor Practice calculations (With Answers).
Book5_08	Inductor Practice calculations (With Answers).
Book5_09	Binary Arithmetic example and tests (With Answers).
Book5_10	Resistor Practice calculations (With Answers).
Book5_11	Number Conversion practice (With Answers)
Book5_12	Frequency / Period Conversion practice (With Answers)
Book5_13	Two input Gate Logic Practice questions (With Answers)
Book5_14	Multi input Gate Logic Practice questions (With Answers)
Book5_15	More Metric Multipliers Practice Calculations (With Answers)
Book5_16	Counters and Registers Practice (With Answers).
Book5_17	NUMBERS.ANS (Solutions to Book2_04 and Book2_05)
Book5_18	
Book5_19	
Book5_20	
Book5_21	
Book5_22	
Book5_23	
Book5_24	
Book5_25	
Book5_26	
Book5_27	
Book5_28	
Book5_29	
Book5_30	
Book5_31	Book2_01 Answers with complete solution
Book5_32	
Book5_33	
Book5_34	
Book5_35	
Book5_36	

SOLDER

An Alloy of

3. No Spikes Lumps, Bumps or Holes

FLUX

Two Types

Corrosive
CLEANS(Used for Plumbing)

and also \downarrow

Non Corrosive(Electrical Work)AIDS HEAT TRANSFERPREVENTS OXIDISATION

MULTI - CORE SOLDER

How Do We Apply the Flux ?

Three Types

Single Strand Bare.

Single Strand Insulated.

Multi-Strand Insulated.

TINNING.

- 1. Twist Wires, After removing the Insulation.
- 2. Coat wires with solder.
- 3. Ensure Individual strands can still be seen.
- 4. Ensure Insulation is **<u>NOT</u>** Damaged.
- 5. Cut wire to size.

Solder Bucket

(1) Cut Wire to Size.

Prepare Bucket with correct amount of Solder.

(3) Apply Heat.

- (A) Ensure wire is correctly tinned.
- (B) Ensure bucket is clean.
- (C) Ensure wire is still visible after heat and solder have been applied.

JOB 04 Specification

STRIPBOARD Soldering.

JOB 06 Specification Part 1

SLEEVING EXERCISE

265	Cable Opened Out.	265	
203	C07	265 Cable ID = 265	
	590	205	

- 1) All wires to remain parallel.
- 2) Bind with lacing cord using spot ties every 1.5 to 2 cms
- 3) Sleeves Read from END to MIDDLE and correct way up when viewed from LHS.

JOB 09 Specification.

Tinning and Joining Exercise.

Tinning Exercise

Tin to about 0.5mm from Insulation

Use Various Wire Sizes

7/0.2 24/0.2 32/0.2 64/0.2

Joining Exercise

Tin to about 1mm from Insulation

Tin to about 0.5mm from Insulation

JOB 03 Specification Part 2

All Wire Pin to Pin e.g. 1 to 1 etc.

1. Wire 37 Way.

Tape Ends To Grip Bundle Together.

- 2. Feed on Braiding, Tie with Waxed String.
- 3. Stretch, Release & Trim Braid.
- 4. Feed on Heat Shrink for **<u>Both</u>** Ends.
- 5. Secure Soldered End.
- 6. Solder Free End , Adjust Length for even termination.
- 7. Secure Braiding and Heat Shrink.

STRIPBOARD LOOM

Notes

- 1) Pin 1 for both CON1 and CON2 is at the Top of the Veroboard. Use natural bend of wire and Full Eurocards size board.
- 2) Check Point to Point wire continuity. ie. Pin1 \rightarrow Pin 10, Pin 2 \rightarrow Pin 9 etc.
- 3) Keep Loom Symmetrical and regular.Mark the board with your Job Number and Name
- 4) Pins are 2 holes apart, centered on the board, Keep Pin rows 3 holes from the end of the board.

JOB Specification 06 part 3

RIBBON CABLE LOOM

- 1) Connect Pins 1,19,20 and 37 first to set your anchor points and to prepare for even wire termination distribution.
- 2) Use Ribbon cable folded. Fan out wires approximately $4 \rightarrow 5$ cms from either end of cable.
- 3) All wires are Point to Point so that :Pin 1 → Pin 19 Pin 20 → Pin 37.
 Note All Pins are facing each other as per the wiring schedule.

JOB Specification 23 & 32

SOLDER.

LEAD	100%	63%	50%	40%	30%	0%
TIN	0%	37%	50%	60%	70%	100%
LIQUID	450°F	359°F	414°F	460°F	496°F	620°F
	232°C			238°C	258°C	327°C
SOLID	450°F	359°F	359°F	359°F	359°F	620°F
				180°C		
PLASTI						
C						
RANGE	0°F	0°F	55°F	101°F	137°F	0°F

The Above information is for background ONLY.

Soldering Iron Tip Numbers.

TIP No.7	=	700°F	> 350°C
TIP No.6	=	600°F	< 350°C

Note The Larger the TIP the Better the Heat Transfer.

SWG:: Standard Wire Gauge. Larger Number = Thinner wires

EDUCATION

- 1) A RELATIVELY PERMANENT CHANGE IN ATTITUDE FOR THE REST OF YOUR LIFE.
- 2) LEARNING IS A VOLUNTARY PROCESS.

3) <u>QUALITY</u> BEFORE <u>SPEED</u>

BS 5750 ISO 9000 EU 9000

COLOUR CODE

Wire	Value	Name	Link	Colour	Value
coue			word		
K				Pink	
В	0	Zero	Zerro	Black	0
N	1	One	Bun	Brown	1
R	2	Two	Shoe	Red	2
0	3	Three	Iree	Orange	3
Y	4	Four	Door	Yellow	4
G	5	Five	Alive	Green	5
U	6	Six	Sex	Blue	6
Р	7	Seven	Heaven	Violet	7
				Purple	
S	8	Eight	Date	Grey	8
				Slate	
W	9	Nine	Line	White	9
			Wine		

$\underline{\mathbf{B}} y e \ \underline{\mathbf{R}} osie \ \underline{\mathbf{O}} ff \ \underline{\mathbf{Y}} ou \ \underline{\mathbf{G}} o \ \underline{\mathbf{B}} ut \ \underline{\mathbf{V}} ia \ \underline{\mathbf{G}} reat$ $\underline{\mathbf{W}} estern.$

Note The Wire code letters are for information purposes only.

Symbol

CAPACITORS.

CRIMPS.

A Mechanical Crushed Electrical Connection

3. Insert in the "INS" Jaws and clamp the Insulation to the Crimp.

INDUCTORS.

SYMBOLS

AIR Core

IRON Core

FERRITE Core

Values measured in <u>HENRYS</u> H

NUMBERS

10^9	One Thousand Million	G	Giga
10^6	One Million	Μ	Mega
10^3	One Thousand	K	Kilo
10^0	One	Uni	its
10^-3	One Thousandth	m	Milli
10^-6	One Millionths	μ	Micro
10^-9	One Thousandth Millionth	n	Nano
10^-12	One Millionth Millionth	р	Pico

1K = 1,000 = 1,000,000m

Moving \uparrow times a 1000 , Moving \downarrow divide by 1000

THREE CHARACTER/DIGIT CODE

This is a common used shorthand.

This system uses the first two digits of a number and either a count of the number of zero's that follow the two numbers or a standard metric multiplier letter.

NT 1			
5600000	Alternatively translates to 5, 6 and digit code 565	5 zero's giving the thr	ree
Example 5600000	Translates to 5,600,000 also be written as 5.6N Note that the decimal p missed or erased so the is used to replace the e.g. 5M6	0 or 5.6million this o A point could be easily e metric multiplier let decimal point.	can ter

<u>Number</u>		<u>3 Characte</u>	<u> 3 Character</u>	
2700	=	2K7		272
27000	=	27K	=	273
270000	=	270K or 0.2	27M or M	[27

	Ex	amples			
100Ω	Resistor	=	100		
10Ω	Resistor	=	10R	or	10Ω
1Ω	Resistor	=	$1\Omega 0$ or	1 R 0	
1000Ω	Resistor	=	1K0		
1000pF	Capacitor	=	1nF	or	102
22µF	Capacitor	=	22μ		
2.2µ	Capacitor	=	2μ2		

Circuit Symbols.

Note that a $\underline{PLUG} = \underline{PINS}$

Various methods of terminating a Screened Cable

The Solder Tag.

VOLTS Etc.

ENERGY TRANSFER.

<u>PCB</u> <u>Printed Circuit Board.</u>

KNOTS

The Clove Hitch

The Wire Plait

ISO 9000

The Quality System.

Consists of :-

ISO 9001 Document Control.

ISO 9002 The Processes.

Other Systems

BS5750 EU9000

Checking

Techniques

Random Grab of Items.

Batch

Sample

A Group of product Items

e.g. $\sqrt{\text{ITEMS}}$

100%

Everthing (as per course)

OHMS LAW

R	=	V A	=	VOLTAGE CURRENT	=	RESISTA	NCE
<u>Syn</u>	<u>ıbol</u>		Me	asurement		<u>Units</u>	
	V Ι Ω		Vo Cu Res	ltage crent sistance		Volts Amps Ohms	V A R

POWER

$\mathbf{P}OWER =$	VOLTAGE	*	CURRENT

$$W = V * A$$

<u>Symbol</u>	<u>Measurement</u>	<u>Units</u>	
V	Voltage	Volts	V
Ι	Current	Amps	Α
W	Power	Watts	W

RESISTORS

V1 ---- = R1 I1

R (total) = R2 + R3V4 = V2 + V3

I5 = I3 + I4

- 1) Define W in terms of R
- What is the resistance of two lamps in Parallel 60W
 + 100W in a mains circuit.

Mains Voltage is assumed to be 240vac.

PROOF.

* R2

* R2

As "I" is Common through both R1 & R2

$$\therefore V = V1 + V2$$

$$V1 = I * R1$$

$$V2 = I * R2$$

$$V = I * R(Total)$$

$$\therefore I * R(Total) = I * R1 + I * R2$$

$$Now divide through by "T" gives$$

$$H* R(Total) = H* R1 + H* R2$$

$$\mathbf{R}(\mathbf{Total}) = \mathbf{R1} + \mathbf{R2} + \dots \mathbf{etc}$$

giving :-

LOOM LACING KNOTS.

- 1. Start with Clove Hitch Plus and Extra Hitch.
- 2. Lace Bundle.
- 3. Lock Bundle with Reversed Lacing Knot.

SWITCHES & RELAYS.

Contacts

 $\underline{NO} = \underline{N}$ ormally \underline{O} pen.

 $\underline{NC} = \underline{N}$ ormally \underline{C} losed.

Single Pole 3 Way

2 Pole 2 Way (Ganged)

The Relay

