ReferencePage Title or Contents

Book1 01	Solder, Alloy of Tin 60% and Lead 40%
Book1_02	Flux, Type Corrosive and Non Corrosive, Multi Core Solder
Book1_03	Wires, 3 Types Single Strand, Insulated, Multi strand Insulated
	Resistance of lengths (Info only)
Book1_04	Tinning a Wire (How to do it)
Book1_05	Soldering into a bucket (How to do it.)
Book1_06	STRIPBOARD LOOM connecting to Vero Pins.
Book1_07	Cable identity marking techniques, Sleeving.
Book1_08	Extended Tinning, Joining Wires (How to do it)
Book1 09	37 Way Loom
Book1_10	Loom PARIS IN THE SPRING Triangle
Book1 11	STRIPBOARD LOOM The Specification (SPEC 06 Part 3)
Book1_12	STRIPBOARD LOOM The Specification (SPEC 23 & 32)
Book1 13	Lead/Tin Solder Matrix + TIP Temps & SWG
Book1_14	EDUCATION a few quotes
Book1_15	Colour Code inc. Wire code and Rhyme
Book1_16	Resistor colours and numbers calculations
Book1_17	Capacitors and Circuit Symbols
Book1_18	Crimping (How to do it.) Plus Definition
Book1_19	Inductors and Circuit Symbols
Book1_20	Numbers Giga to Pico (* 1000, / 1000)
Book1_21	3 Digit numbers shorthand calculations
Book1_22	Transformers, Cells, Earth, Wires, Switch
Book1_23	Transistor, Diodes, IC's, Fuse, LDR, Pin 1
Book1_24	Loom skills, Solder Tag, Screen terminations.
Book1_25	Relationship analogy to water / Volts/pressure Flow/amps Resistance
Book1_26	Energy transfer, For the capacitor
Book1_27	PCB types and Component Mounting, Heat Sinks & Shunts
Book1_28	KNOTS Clove Hitch and the Wire Plait
Book1_29	Coaxial Cable Connector BNC (How to do it.)
Book1_30	Veroboard Wiring routing analogy example and constraints example
Book1_31	Quality, ISO9000, Checking techniques 100%, Batch, Random.
Book1_32	Ohms Law, Voltage, Current, Resistance and Power
Book1_33	Ohms Law, Calculation summary.
Book1_34	Ohms Law, V/I=R, Power Triangles, Practice calculations
Book1_35	Ohms Law, Resistors in Parallel the Proof
Book1_36	Ohms Law, Resistors in Series the Proof
Book1_37	Loom skills, Continuous Knot Lacing.

Book1_38 Switches , Schematic presentation Symbols , Operation of the Relay

<u>Reference</u> Page Title or Contents

- Book2_01 Ohms Law , Calculation practice Circuit
- Book2_02 Ohms Law , Calculation practical Lamps Circuit
- Book2_03 Ohms Law , Calculation practical Speaker Circuit
- Book2_04 RESISTORS converting colours to numbers practice questions.
- Book2_05 Number converting to colours or three digits practice questions.
- Book2_06 NOTICE
- Book2_07 JOB procedure paperwork needed for personal evidence.
- Book2_08 Low Profile Soldering method (How to do it.)
- Book2_09 Soldering into a Shallow bucket (How to do it.)
- Book2_10 Soldering onto a Connector Pin (How to do it.)
- Book2_11 General Notes , Transistors , Diodes , Resistors
- Book2_12 General Notes , Capacitors , Inductor
- Book2_13 Variable Components Schematic Resistors , Capacitors , Inductors
- Book2_14 Numbers Giga to Pico Physical measurements in Electronics & domestic.
- Book2_15 Loom skills , BIG Looms building guidelines.
- Book2_16 Loom skills , Guidance and Hints building LOOM 03.
- Book2_17 PCB REPAIR Bridging Tracks (How to do it.) (JOB SPEC 54 Part 1)
- Book2_18 PCB REPAIR Lifted Tracks (How to do it.) (JOB SPEC 54 Part 2)
- Book2_19 Desoldering Buckets (How to do it.) (JOB SPEC 53)
- Book2_20 WIRE WRAPING MANUAL (How to do it.) (JOB SPEC 56)
- Book2_21 CAPACITOR Polarity recognition (Tant Bead)
- Book2_22 NVQ the Qualification Diagram Plus quote.
- Book2_23 TV Coaxial Cable Connector (How to do it.)
- Book2_24 Resistors Gold and Silver Multiplier Bands less than 10 ohms
- Book2_25 STRIPBOARD LOOM Soldering Links and Components (JOB SPEC 06 Part 2)
- Book2_26 Tinning Assessment Exercise. (JOB SPEC 03 Part 3)
- Book2_27 Metric / Imperial Conversions
- Book2_28 Phone & Jack Terminations (How to do it.)
- Book2_29 General Notes on IC's
- Book2_30 'F' Type Coaxial Cable Connector (How to do it.)
- Book2_31
- Book2_32
- Book2 33
- Book2 34
- Book2_35
- Book2_36

ReferencePage Title or Contents

- Book3_01 Colour Code practice.
- Book3_02 Resistor Circuit Practice calculations.
- Book3_03 Using the Oscilloscope questions.
- Book3_04 Digital Arithmetic practice.
- Book3_05 Metric Multipliers Practice Calculations
- Book3_06 Using the Oscilloscope questions (Number 2).
- Book3_07 Capacitor Practice calculations.
- Book3 08 Inductor Practice calculations.
- Book3_09 Binary Arithmetic example and tests.
- Book3_10 Resistor Practice calculations.
- Book3_11 Number Conversion practice
- Book3_12 Frequency / Period Conversion practice
- Book3_13 Two input Gate Logic Practice questions
- Book3_14 Multi input Gate Logic Practice questions
- Book3_15 More Metric Multipliers Practice Calculations
- Book3_16 Counters and Registers Practice.
- Book3_17 Book3_18
- Book3_19
- Book3_20
- Book3_21
- Book3_22
- Book3 23
- Book3_24
- Book3 25
- Book3_26
- Book3_27
- Book3_27 Book3_28
- DOOK5_28
- Book3_29
- Book3_30
- Book3_31
- Book3_32
- Book3_33
- Book3_34
- Book3_35
- Book3_36

ReferencePage Title or Contents

- Book4_01 Amplifier Theory
- Book4_02 General Purpose Log Sheet
- Book4_03 USEFUL.TXT (Computer or Maths information)
- Book4_04 USEFUL1.TXT (Computer connection information)
- Book4_05 Witness statement for external Diaries and Log Reports
- Book4_06 General Outline and structure of a Project Report.
- Book4_07 FIFO or Queue Handling Programming exercise.
- Book4_08 Rights and Duty (A Question)
- Book4_09 British Standard Proof Reading Symbols
- Book4_10 Your main life Goals.
- Book4_11 Basic CV letter layout.
- Book4_12 Tools.Doc (Tools used on Vocational courses [Use, Health and Safety])
- Book4_13 JOBQTY.Doc (Checking Quality of circuit boards etc. [How to do it])
- Book4_14 Colour Test (with Life Style Analysis)
- Book4_15 Book4 16 Book4 17 Book4 18 Book4_19 Book4 20 Book4_21 Book4_22 Book4 23 Book4_24 Book4 25 Book4 26 Book4 27 Book4 28 Book4_29 Book4_30 Book4_31 Book4 32
- Book4_33 Book4_34
- Book4 35
- Book4_36

Reference Page Title or Contents

Book5_01	Colour Code practice (With Answers).
Book5_02	Resistor Circuit Practice calculations (With Answers).
Book5_03	Using the Oscilloscope questions (With Answers).
Book5_04	Digital Arithmetic practice (With Answers).
Book5_05	Metric Multipliers Practice Calculations (With Answers)
Book5_06	Using the Oscilloscope questions (Number 2) (With Answers).
Book5_07	Capacitor Practice calculations (With Answers).
Book5_08	Inductor Practice calculations (With Answers).
Book5_09	Binary Arithmetic example and tests (With Answers).
Book5_10	Resistor Practice calculations (With Answers).
Book5_11	Number Conversion practice (With Answers)
Book5_12	Frequency / Period Conversion practice (With Answers)
Book5_13	Two input Gate Logic Practice questions (With Answers)
Book5_14	Multi input Gate Logic Practice questions (With Answers)
Book5_15	More Metric Multipliers Practice Calculations (With Answers)
Book5_16	Counters and Registers Practice (With Answers).
Book5_17	NUMBERS.ANS (Solutions to Book2_04 and Book2_05)
Book5_18	
Book5_19	
Book5_20	
Book5_21	
Book5_22	
Book5_23	
Book5_24	
Book5_25	
Book5_26	
Book5_27	
Book5_28	
Book5_29	
Book5_30	
Book5_31	Book2_01 Answers with complete solution
Book5_32	
Book5_33	
Book5_34	
Book5_35	
Book5_36	

RESISTORS.

- Q1. What is I in Amps.
- Q2. What is the Current through R8.
- Q3. What is the Voltage across R7.

Advanced Questions.

- Q4. Calculate the Voltage across every Resistor.
- Q5. Calculate the Current flowing in every Resistor.
- Q6. Calculate the power dissipated by every Resistor.

- Q1. What is the Resistance of the above circuit.
- Q2. How Much Current flows in the Circuit.

 $A \leftarrow 25m \rightarrow B$

- Q1. To Ensure that Speaker S1 is NOT destroyed when the Amplifier is run at Full power What value does R1 need to be ?
- Q2. 7/0.2 wire is used to between points "A" & "B". How much power is lost in the cable ?
- Note A 0.2mm wire strand \cong 92.2 Ω /Km

RESISTORS

1st	2nd	3rd 4th		5th
Band	Band	Band Band		Band
RED	BLUE	GREEN		
BROWN	YELLOW	BLACK GOLD		
BROWN	BLACK	GREEN		
RED	ORANGE	BLUE	YELLOW	
GREY	WHITE	BROWN		
BLUE	SLATE	YELLOW		
VIOLET	YELLOW	BROWN	BLACK	
ORANGE	WHITE	RED		
BROWN	BLACK	BLACK	BLACK	GOLD
ORANGE	BLUE	GREEN	SILVER	
RED	RED	RED	RED	RED
BROWN	BLUE	BLACK	BLACK	BROWN

NUMBERS

<u>Colours</u>	Ω or pF Convert	<u>3 Digits</u>
<u>19000</u>		1 M
<u>625</u>		<u>390</u>
<u>620</u>		<u>390</u>
4K7 @2%		22K
2μ2		66n
1n7		100 @ 10%
22000pF		68R
56K		μ12
100000		n57
R25		330000pF
2R7 @ 1%		M22
.1µF		1R0

HEADWEY

ELECTRONICS

PRODUCT

<u>ASSEMBLY</u>

COURSE

JOBS

LOW PROFILE SOLDERING.

<u>Used for some "Military</u> <u>Specification" Work.</u>

SHALLOW BUCKETS.

1. Twist & Tin Wire.

2. Trim Wire.

BEWARE OF OVER HEATING THE CONNECTOR

SOLDER PIN.

- 1. Twist & Tin Wire.
- 2. Trim Wire and Add Sleeve.
- 3. Tin Pin.
- 4. Lap wire to Pin.

GENERAL NOTES

TRANSISTORS. (Heat Sensitive)

- 1. Transfer of Resistance.
- 2. An Electronic Switch.
- 3. Three Electrodes (Normally) <u>BASE</u>, <u>COLLECTOR</u>, <u>EMITTER</u>.
- 4. Two Major Constructions versions PNP & NPN.
- **<u>DIODE.</u>** (Heat Sensitive)(Polarity Conscious)
 - 1. A two electrode device.
 - 2. A <u>One Way Device</u> / Valve.
 - 3. May emit light when current flows through it (<u>LED</u>).
 LED = Light Emitting Diode.

RESISTORS

- 1. Restricts flow of electrons
 - i.e. Reduces Current.
- 2. Measured in <u>OHM's</u>

GENERAL NOTES

CAPACITORS

- 1. Stores energy as <u>STATIC</u> electric charge.
- 2. Measured in <u>FARADS</u>
- 3. Two major variations :
 - a. NON POLARISED
 - b. <u>POLARISED</u> (Polarity Conscious) Type often is or called ELECTROLYTIC

INDUCTORS

- 1. Stores energy as a MAGNETIC field.
- 2. Measured in <u>HENRY's</u>

VARIABLE COMPONENTS.

RESISTORS

POTENTIOMETER RHEOSTAT

CAPACITORS

VARIABLE

PRE-SET or TRIMMER

INDUCTORS

VARIABLE

Trimmer

PRE-SET

TAPPED

NUMBER RANGE.

BIG LOOMS

1. Add termination point to end of each connector on cable form layout.

2. Route wires as per schedule.

3. Place on Loom Sleeving and Shrink as required.

DO NOT SEAL.

- 4. Check Routing of Loom.
- 5. Make of Soldered Connectors.
- 6. Check Routing of Loom.
- 7. Make off crimps.
- 8. Seal up Loom only after checking if all is OK.

Loom 03 Hints.

Printed Circuit Board (PCB) Repair.

 Cut/Score Track. Use heat to remove track. This activity will only be needed if this is a repair practice exercise.

(2) Clean and Tin the markerd area. Tin section of single strand wire to bridge the gap.

(3) Bridge gap with Tinned wire of roughly the same cross sectional area. Add extra solder as required.

JOB 54 Specification Part 1

Printed Circuit Board (PCB) Repair.

- (4) Re-fit with EPOXY resin glue.
- (5) Clean track surface.

JOB 54 Specification Part 2

De-SOLDERING.

JOB 53 Specification

the bucket.

WIRE WRAP

- 1) Strip about 1"/3cm of Insulation from the wire wrap wire.
- 2) Feed bare wire into the Wrap Tool via the Wire Hole.
- 3) Place Wrap tool over Wire Wrap Pin.
- 4) Rotate Tool in clockwise direction. Ensuring that the wire grips the Pin.

CAPACITOR POLARITY.

- 1. In General the Bar or Line Indicates the Ground or Negative Pin.
- <u>HOWEVER</u> Sometimes the Bar contains a + Symbol therefore this becomes the Positive Connection.
- 3. TANTALUM BEAD CAPACITOR.

IF IN DOUBT

ASK or CHECK

Example of a 100nF, 35 volt Working Capacitor.

The Qualification

Developed by Industry for Industry.

PC = Performance Criteria

- 1) Place rear case section on coaxial Cable.
- 2) Strip outer insulation from cable and fit braid clamp.
- 3) Strip back braid and prepare centre core for soldering to center pin. Tin centre wire at least 1cm longer than require length.
- 4) Fit center housing so that the braid is clamped.
- 5) Solder Center pin to center pin wire.
 - <u>Note</u> The center housing is very easily melted.
 - <u>Note</u> That with the Socket version the centre pin is removable therefore careful measurement is needed for correct fitting.
 - Secure Front Case Section to rear Section and Clamp Tight

RESISTORS

With values less than 10Ω

The Special Case

The count of zero's band has two additional colours.

GOLD	= Divide value by 10			
SILVER	= Divide value by 100			
e.g. 5R4	= GREEN	YELLOW	GOLD	
R27	= RED	VIOLET	SILVER	
5R4	$= 5.4\Omega$			

 $R27 \quad = \quad 0.27 \Omega$

STRIPBOARD.

Component or Link Soldering Practice. Using 1/0.6 Pink

- 1. Remove Length of Insulation from Pink Wire.
- 2. Using back of wire cutters move required measure length of Insulation down stripped wire area.

- 3. Cut off required (Dot enclosed) section and shape to fit PCB.
- 4. Use same technique to solder link to PCB as was used for the Terminal Pins.

Practice as Required as Least 5 Links.

Assessment Exercises.

Tinning Exercise

Joining Exercise

Tin to about 1mm from Insulation at least 60/0.2

JOB 03 Specification Part 3

METRIC - IMPERIAL

1 Inch = 2.54 cm = 25.4 mm 12 Inches = 1 Foot 36 Inches = 1 Yard $39 \text{ Inches} \cong 1 \text{ Metre}$ 3 Feet = 1 Yard

STOCK RECORDING

All length measure	d in		
METRE UNITS	ie	3cm's NOT OK	×
		3 cm's = 0.03 m	

Round Quantities as follows :-

Below ().1 =	0.1	$0.5+\rightarrow$	0.8 = 0.8
$0.1+ \rightarrow 0$).2 =	0.2	$0.8+ \rightarrow$	1 = 1
$0.2+\rightarrow 0$).3 =	0.3	$1+\rightarrow$	1.5 = 1.5
$0.3+ \rightarrow 0$).5 =	0.5	$1.5+\rightarrow$	Round to
				next whole
				number

PHONO & JACK.

- 3. Secure tinned braid to outer connection and crimp outer insulation as appropriate.
- 4. Finally fit outer connector casing.

GENERAL NOTES

INTEGRATED CIRCUIT (IC).

- 1. A collection of circuit elements contained within a single package.
- 2. Pin 1 is the Top Left Hand Corner and is marked or identified.
- 3. Count remainder of the pins round device in an Anti-Clockwise direction.
- 4. IC's are Both ESD and Heat Sensitive.
- 5. IC's come in various packages outlines : SIL Single Inline One line of Pins.
 DIL Dual Inline Two Rows of Pins.
 Quad Packs Pins on all 4 sides.
- 6 Often IC's are referred to by generic part numbers i.e. LS151 could be a DM74LS151N or an SN74LS151N.
- 7 On circuit diagrams often only the signal connections are drawn. Most IC's need power to be applied to them and this information may supplied in an additional table. Remember that identified connections to power rails may only be preset logic level rather than being the actual power connection needed to drive the device.

'F' Type Plug

1. Trim back Outer Insulation Sheath.

2. Trim back Metal Shield.

3. Fold back braid over Outer Insulation Sheath and trim Inner Insulation.

4. Finally hold cable and screw rear of connector over the cable.

- 5. Ensure that no more than 1mm of conductor sticks out from end of connector. Note that there should be some conductor protruding.
- 6. Final checks: Ensure that the centre core and the outer braids are totally isolated as the cable will usually carry both power and signals. Any shorts on the cable may well damage the equipment that it is to be connected to.