
GPS_UTM.bas
Attribute VB_Name = "GPS_UTM"
Option Explicit
Rem
Rem With thanks to
Rem Copyright 1997-1998 by Charles L. Taylor (Chuck Taylor) author of the javascript
Rem examples with reference to
Rem <P>Programmers: The JavaScript source code in t his document may be copied
Rem and reused without restriction.</P>
Rem
Rem With thanks to
Rem Steven Dutch Natural and Applied Science (Unive rsity of Wisconsin Green Bay)
Rem Converting UTM to Latitude and Longitude (Or Vi ce Versa).
Rem Constants Information located in document.

Rem
Rem Converted to VB6 by R. J. Spriggs June 2013
Rem Programmers: The Visual Basic source code in th is document may be copied
Rem and reused any for non commercial use.
Rem

Rem
Rem Functions and Subroutines located in th is Module.
Rem
Rem Type Name Comment
Rem

Rem Subroutine CvtLL2UTMCode Convert Latitude and Longitude (in degrees)
Rem to UTM Grid Code and Central Meridian
Rem Subroutine CvtLL2UTM Convert Latitude and Longitude (in degrees)
Rem to UTM Numeric Grid
Rem Subroutine CvtLL2UTM4DP Convert Latitude and Longitude (in degrees)
Rem to UTM Numeric Grid to nearest metre
Rem Function ArcLengthOfMeridian Compute s the ellipsoidal distance from the
Rem equator to a point at a given latitude.
Rem Subroutine MapLatLonToXY Convert s a latitude/longitude pair to x,y
Rem coordin ates in the Transverse Mercator
Rem project ion.
Rem Note th at Transverse Mercator is not
Rem the sam e as UTM a scale factor is required
Rem to conv ert between them.
Rem Subroutine CvtUTM2LL Convert UTM Numeric Grid to
Rem Latitud e and Longitude (in degrees)
Rem Function CvtUTMFull2Short Convert a Full UTM Zone code to a short
Rem version that only contains North and
Rem Souther n Hemisphere codes.
Rem Function UTMCodeTidy Will Ti dy a UTM code.
Rem Function FootpointLatitude Compute s the footpoint latitude for use in
Rem convert ing transverse Mercator coordinates
Rem to elli psoidal coordinates.
Rem Subroutine MapXYToLatLon Convert s x and y coordinates in the
Rem Transve rse Mercator projection to
Rem a latit ude/longitude pair.
Rem
Rem ============================ Warning ======= ================================
Rem The fol lowing routine must be called before
Rem any oth er routine in this set is used.
Rem Subroutine SetMajorMinorAxis Initial ise Major/Minor UTM Axis.
Rem === ================================

Rem === ====================
Rem Universal Transverse Mercator UTM Conversion Se ction
Rem === ====================

Rem Definitions of Common UTM information stores
Global sm_a As Double 'Ellips oid model major axis.
Global sm_b As Double 'Ellips oid model minor axis.
'Global sm_EccSquared As Double 'Eccen tricity squared (Never used)
Global UTMScaleFactor As Double 'Scale along central meridian

Page 1

GPS_UTM.bas
Rem Functions and Subroutines for UTM Conversions

Rem -------------------- Latitude/Longitude to UT M set --------------------

Public Sub CvtLL2UTMCode(UTM As String, CMed As Dou ble, Lat As Double, Lng As Double,
Status As String)
Rem Convert Latitude and Longitude (in degrees) to UTM Grid Code and Central Meridian
Rem Initial Design 15/May/2013 Author R. J. Spriggs

Dim Zone As Integer
Dim Cnt As Integer
Dim Pnt As Integer
Dim Codes As String
Dim Bounds(24) As Integer

 Rem Calculate Code Number
 Codes = "ABCDEFGHJKLMNPQRSTUVWXYZ"
 Pnt = 1
 Bounds(Pnt) = -90: Pnt = Pnt + 1
 Bounds(Pnt) = -80: Pnt = Pnt + 1
 For Pnt = 3 To 21
 Bounds(Pnt) = Bounds(Pnt - 1) + 8
 Next Pnt
 Bounds(Pnt) = 84: Pnt = Pnt + 1
 Bounds(Pnt) = 87: Pnt = Pnt + 1
 Bounds(Pnt) = 90: Pnt = Pnt + 1

 Cnt = -1: For Pnt = 1 To 24
 If Lat < Bounds(Pnt) And Cnt < 0 Then
 Cnt = Pnt
 End If
 Next Pnt
 If Cnt > 0 Then UTM = " " + Mid$(Codes, Cnt, 1)

 Rem Calculate Zone Number
 Zone = Int((Lng + 180) / 6) + 1
 UTM = V2S$(Zone) + UTM
 CMed = Int(Lng / 6) * 6 + 3 'Ca lculate Central Meridian of Zone
End Sub

Sub CvtLL2UTM(UTM As String, CMed As Double, Lat As Double, Lng As Double, Status As
String)
'Rem Convert Latitude and Longitude (in degrees) to UTM Numeric Grid
Dim Phi As Double
Dim lambda As Double
Dim lambda0 As Double
Dim easting As Double
Dim northing As Double

 Phi = Lat * Pi / 180
 lambda = Lng * Pi / 180
 lambda0 = CMed * Pi / 180
 MapLatLonToXY Phi, lambda, lambda0, easting, no rthing

 Rem Adjust easting and northing for UTM system.
 easting = easting * UTMScaleFactor + 500000
 northing = northing * UTMScaleFactor
 If northing < 0 Then northing = northing + 1000 0000

 UTM = Str$(easting / 1000) + "kmE " + Str$(nor thing / 1000) + "kmN"

End Sub

Sub CvtLL2UTM4DP(UTM As String, CMed As Double, Lat As Double, Lng As Double, Status As
String)
Rem Convert Latitude and Longitude (in degrees) to UTM Numeric Grid (to 4 Decimal Places)
Dim Phi As Double
Dim lambda As Double

Page 2

GPS_UTM.bas
Dim lambda0 As Double
Dim easting As Double
Dim northing As Double

 Phi = Lat * Pi / 180
 lambda = Lng * Pi / 180
 lambda0 = CMed * Pi / 180
 MapLatLonToXY Phi, lambda, lambda0, easting, no rthing

 Rem Adjust easting and northing for UTM system.
 easting = easting * UTMScaleFactor + 500000
 northing = northing * UTMScaleFactor
 If northing < 0 Then northing = northing + 1000 0000

 UTM = Str$(Int(easting + 0.5) / 1000) + "kmE " + Str$(Int(northing + 0.5) / 1000) +
"kmN"

End Sub

Function ArcLengthOfMeridian(Phi As Double)
Rem
Rem Computes the ellipsoidal distance from the equa tor to a point at a
Rem given latitude.
Rem
Rem Reference: Hoffmann-Wellenhof, B., Lichtenegger , H., and Collins, J.,
Rem GPS: Theory and Practice, 3rd ed. New York: Sp ringer-Verlag Wien, 1994.
Rem
Rem Inputs:
Rem phi - Latitude of the point, in radians.
Rem
Rem Globals:
Rem sm_a - Ellipsoid model major axis.
Rem sm_b - Ellipsoid model minor axis.
Rem
Rem Returns:
Rem The ellipsoidal distance of the point from the equator, in meters.

Dim n As Double 'Wo rk Variable
Dim alpha As Double 'Wo rk Variable
Dim beta As Double 'Wo rk Variable
Dim gamma As Double 'Wo rk Variable
Dim delta As Double 'Wo rk Variable
Dim epsilon As Double 'Wo rk Variable
Dim Tmp1 As Double, Tmp2 As Double, Tmp3 As Double, Tmp4 As Double

 n = (sm_a - sm_b) / (sm_a + sm_b) 'Pr ecalculate n
 'Pr ecalculate alpha
 alpha = ((sm_a + sm_b) / 2) * (1 + ((n ^ 2) / 4) + ((n ^ 4) / 64))
 'Pr ecalculate beta
 beta = (-3 * n / 2) + (9 * (n ^ 3) / 16) + (-3 * (n ^ 5) / 32)
 'Pr ecalculate gamma
 gamma = (15 * (n ^ 2) / 16) + (-15 * (n ^ 4) / 32)
 'Pr ecalculate delta
 delta = (-35 * (n ^ 3) / 48) + (105 * (n ^ 5) / 256)
 'Pr ecalculate epsilon
 epsilon = (315 * (n ^ 4) / 512)

 Rem Now calculate the sum of the series and ret urn
 Tmp1 = (beta * Sin(2 * Phi)) 'In terim result
 Tmp2 = (gamma * Sin(4 * Phi)) 'Interim result
 Tmp3 = (delta * Sin(6 * Phi)) 'Interim result
 Tmp4 = (epsilon * Sin(8 * Phi)) 'Interim result

 ArcLengthOfMeridian = alpha * (Phi + Tmp1 + Tmp 2 + Tmp3 + Tmp4)

End Function

Sub MapLatLonToXY(Phi As Double, lambda As Double, lambda0 As Double, x As Double, y As
Double)

Page 3

GPS_UTM.bas
Rem
Rem Converts a latitude/longitude pair to x and y c oordinates in the
Rem Transverse Mercator projection. Note that Tran sverse Mercator is not
Rem the same as UTM; a scale factor is required to convert between them.
Rem
Rem Reference: Hoffmann-Wellenhof, B., Lichtenegger , H., and Collins, J.,
Rem GPS: Theory and Practice, 3rd ed. New York: Sp ringer-Verlag Wien, 1994.
Rem
Rem Inputs:
Rem phi - Latitude of the point, in radians.
Rem lambda - Longitude of the point, in radians.
Rem lambda0 - Longitude of the central meridian to be used, in radians.
Rem
Rem Outputs:
Rem x,y - Contains the x=Easting and y=Northing coordinates
Rem of the computed point.
Rem
Dim n As Double, nu2 As Double, ep2 As Double, t As Double, t2 As Double, l As Double
Dim l3coef As Double, l4coef As Double, l5coef As D ouble, l6coef As Double
Dim l7coef As Double, l8coef As Double
Dim Tmp1 As Double, Tmp2 As Double, Tmp3 As Double, Tmp4 As Double

 'ep2 = (Math.pow (sm_a, 2.0) - Math.pow (sm_b, 2.0)) / Math.pow (sm_b, 2.0)
 ep2 = ((sm_a ^ 2) - (sm_b ^ 2)) / (sm_b ^ 2) 'Precalculate ep2

 'nu2 = ep2 * Math.pow (Math.cos (phi), 2.0);
 nu2 = ep2 * Cos(Phi) ^ 2 'Precalculate nu2

 'N = Math.pow (sm_a, 2.0) / (sm_b * Math.sqrt (1 + nu2));
 n = (sm_a ^ 2) / (sm_b * Sqr(1 + nu2)) 'Precalculate N

 't = Math.tan (phi);
 't2 = t * t;
 'tmp = (t2 * t2 * t2) - Math.pow (t, 6.0);
 t = Tan(Phi) 'Precalculate t
 t2 = t * t
 Rem Tmp = (t2 * t2 * t2) - (t ^ 6) '(Never Used)

 l = lambda - lambda0 'Precalculate l

Rem Precalculate coefficients for l**n in the e quations below
Rem so a normal human being can read the expres sions for easting
Rem and northing
Rem -- l**1 and l**2 have coefficients of 1.0

 l3coef = 1 - t2 + nu2
 l4coef = 5 - t2 + 9 * nu2 + 4 * (nu2 * nu2)
 l5coef = 5 - 18 * t2 + (t2 * t2) + 14 * nu2 - 5 8 * t2 * nu2
 l6coef = 61 - 58 * t2 + (t2 * t2) + 270 * nu2 - 330 * t2 * nu2
 l7coef = 61 - 479 * t2 + 179 * (t2 * t2) - (t2 * t2 * t2)
 l8coef = 1385 - 3111 * t2 + 543 * (t2 * t2) - (t2 * t2 * t2)

 Tmp1 = (n / 6 * Cos(Phi) ^ 3 * l3coef * (l ^ 3)) 'Interim Result
 Tmp2 = (n / 120 * Cos(Phi) ^ 5 * l5coef * l ^ 5) 'Interim Result
 Tmp3 = (n / 5040 * Cos(Phi) ^ 7 * l7coef * l ^ 7) 'Interim Result
 x = n * Cos(Phi) * l + Tmp1 + Tmp2 + Tmp3 'Calculate easting (x)

 Tmp1 = (t / 2 * n * Cos(Phi) ^ 2 * l ^ 2) 'Interim Result
 Tmp2 = (t / 24 * n * Cos(Phi) ^ 4 * l4coef * l ^ 4) 'Interim Result
 Tmp3 = (t / 720 * n * Cos(Phi) ^ 6 * l6coef * l ^ 6) 'Interim Result
 Tmp4 = (t / 40320 * n * Cos(Phi) ^ 8 * l8coef * l ^ 8) 'Interim Result
 y = ArcLengthOfMeridian(Phi) + Tmp1 + Tmp2 + T mp3 + Tmp4 'Calculate northing (y)
End Sub

Rem -------------------- UTM to Latitude/Longitud e set --------------------

Sub CvtUTM2LL(UTMCode As String, easting As Double, northing As Double, Lat As Double,
Lng As Double, Status As String)
Rem Convert UTM Numeric Grid to Latitude and Longit ude (in degrees)

Page 4

GPS_UTM.bas
Rem UTMCode takes the form Xnn where nn=Zone Code(1 -60) and X=(N=North,S=South)
Dim x As Double 'UT M x
Dim y As Double 'UT M y
Dim LatR As Double 'La titude in Radians
Dim LngR As Double 'Lo ngitude in Radians
Dim Wrk As String 'Wo rk String
Dim Zone As Integer 'UT M Zone Number
Dim CMed As Double 'Ce ntral merdian of UTM Zode
 Wrk = UTMCodeTidy(UTMCode) 'Fo rce format of UTM code

 Rem Calculate Zone Number
 Zone = Val(Mid$(Wrk, 2)) 'Ex tract and calculate Zone Number
 If Zone <= 0 Or Zone > 60 Or Mid$(Wrk, 1, 1) = "?" Then
 Status = "Invalid Zone " + Wrk
 Exit Sub 'Qu it as Job Done
 End If
 'CMed = (Zone * 6 - 180)-3 'C alculate Central Meridian of Zone
 CMed = Zone * 6 - 183 'Ca lculate Central Meridian of Zone
 CMed = CMed / 180 * Pi 'Co nvert to Radians

 x = (easting * 1000) - 500000 'Ho ld centralised easting in metres
 x = x / UTMScaleFactor 'Co rrect for UTM
 Rem If in southern hemisphere, adjust y accordi ngly.
 y = northing * 1000 'Ho ld North Value in metres
 If Mid$(Wrk, 1, 1) = "S" Then y = y - 10000000
 y = y / UTMScaleFactor 'Co rrect for UTM
 MapXYToLatLon x, y, CMed, LatR, LngR 'Co nvert to Lat/Long (in Radians)

 Lat = LatR / Pi * 180 'Co nvert Latitude to Degrees
 Lng = LngR / Pi * 180 'Co nvert Longitude to Degrees

End Sub

Function CvtUTMFull2Short(Raw As String)
Rem This routine will convert a Full UTM Zone code to a short version that
Rem only contains North and Southern Hemisphere cod es.
Rem Output takes the form Xnn where X=(N=North,S=So uth) and nn=Zone Code(01-60)
Rem Initial Design 01/June/2013 Author R. J. Sprigg s
Dim Zone As Integer 'Zone Number
Dim Hem As String 'North or South Code
Dim CPnt As Integer 'General Character Pointer
Dim Pnt As Integer 'General Pointer
Dim Char As String 'Character store
 Hem = "N" 'Assume Northern Hemisphere
 Zone = 0 'Assume an Invalid Zone

 For CPnt = 1 To Len(Raw) 'Parse all characters in Raw String
 Char = Mid$(Raw, CPnt, 1) 'Extract a character
 Pnt = InStr("0123456789", Char) 'Check if valid Digit
 If Pnt <> 0 Then 'When Valid, update Zone value
 Zone = Zone * 10 + Pnt - 1 'Calculate new Zone value
 Else 'Try to Locate Hemisphere code
 If InStr("NPQRSTUVWXYZ", Char) <> 0 The n Hem = "N"
 If InStr("ABCDEFGHJKLM", Char) <> 0 The n Hem = "S"
 End If
 Next CPnt
 If Zone < 10 Then Hem = Hem + "0" 'Zone always 2 digits
 CvtUTMFull2Short = Hem + Mid$(Str$(Zone), 2) 'Produce form Xnn

End Function

Function UTMCodeTidy(Raw As String)
Rem This routine will Tidy a UTM code (redundant ch aracters removed)
Rem UTMCode takes the form Xnn where nn=Zone Code(1 -60) and X=an alpha A->H,J->N,P->Z
Rem Initial Design 02/June/2013 Author R. J. Sprigg s
Dim Zone As Integer 'Zone Number
Dim Cde As String 'Zone Code
Dim Ref As String 'Valid Zone Codes
Dim CPnt As Integer 'General Character Pointer
Dim Pnt As Integer 'General Pointer

Page 5

GPS_UTM.bas
Dim Char As String 'Character store
 Cde = "?" 'Assume unknown Region
 Zone = 0 'Assume an Invalid Zone
 Ref = "ABCDEFGHJKLMNPQRSTUVWXYZ"

 For CPnt = 1 To Len(Raw) 'Parse all characters in Raw String
 Char = UCase$(Mid$(Raw, CPnt, 1)) 'Extract a character in Uppercase
 Pnt = InStr("0123456789", Char) 'Check if valid Digit
 If Pnt <> 0 Then 'When Valid, update Zone value
 Zone = Zone * 10 + Pnt - 1 'Calculate new Zone value
 Else 'Try to Locate Valid Hemisphere code
 If InStr(Ref, Char) <> 0 Then Cde = Cha r
 End If
 Next CPnt
 If Zone > 60 Or Zone < 1 Then Zone = 0 'Validate Zone Range
 If Zone < 10 Then Cde = Cde + "0" 'Zone always 2 digits
 UTMCodeTidy = Cde + Mid$(Str$(Zone), 2) 'Produce form Xnn
End Function

Function FootpointLatitude(y As Double)
Rem Computes the footpoint latitude for use in conv erting transverse
Rem Mercator coordinates to ellipsoidal coordinates .
Rem
Rem Reference: Hoffmann-Wellenhof, B., Lichtenegger , H., and Collins, J.,
Rem GPS: Theory and Practice, 3rd ed. New York: Sp ringer-Verlag Wien, 1994.
Rem
Rem Inputs:
Rem y - The UTM northing coordinate, in meters.
Rem
Rem Returns:
Rem The footpoint latitude, in radians.
Rem
Dim y_ As Double, alpha_ As Double, beta_ As Double , gamma_ As Double
Dim delta_ As Double, epsilon_ As Double, n As Dou ble
Dim Tmp1 As Double, Tmp2 As Double, Tmp3 As Double

 n = (sm_a - sm_b) / (sm_a + sm_b) 'Precal culate n (Eq. 10.18)
 'Precal culate alpha_ (Eq. 10.22)
 '(Same as alpha in Eq. 10.17)
 alpha_ = ((sm_a + sm_b) / 2) * (1 + (n ^ 2 / 4) + (n ^ 4 / 64))
 y_ = y / alpha_ 'Precal culate y_ (Eq. 10.23)
 'Precal culate beta_ (Eq. 10.22)
 beta_ = (3 * n / 2) + (-27 * n ^ 3 / 32) + (269 * n ^ 5 / 512)
 'Precal culate gamma_ (Eq. 10.22)
 gamma_ = (21 * n ^ 2 / 16) + (-55 * n ^ 4 / 32)
 'Precal culate delta_ (Eq. 10.22)
 delta_ = (151 * n ^ 3 / 96) + (-417 * n ^ 5 / 1 28)
 epsilon_ = (1097 * n ^ 4 / 512) 'Precal culate epsilon_ (Eq. 10.22)

 Rem Now calculate the sum of the series (Eq. 10.21)
 Tmp1 = (gamma_ * Sin(4 * y_)) 'Interi m Result
 Tmp2 = (delta_ * Math.Sin(6 * y_)) 'Interi m Result
 Tmp3 = (epsilon_ * Math.Sin(8 * y_)) 'Interi m Result

 FootpointLatitude = y_ + (beta_ * Sin(2 * y_)) + Tmp1 + Tmp2 + Tmp3
End Function

Sub MapXYToLatLon(x As Double, y As Double, lambda0 As Double, Lat As Double, Lng As
Double)

Rem Converts x and y coordinates in the Transverse Mercator projection to
Rem a latitude/longitude pair. Note that Transvers e Mercator is not
Rem the same as UTM; a scale factor is required to convert between them.
Rem
Rem Reference: Hoffmann-Wellenhof, B., Lichtenegger , H., and Collins, J.,
Rem GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
Rem
Rem Inputs:
Rem x - The easting of the point, in meters.
Rem y - The northing of the point, in meters.

Page 6

GPS_UTM.bas
Rem lambda0 - Longitude of the central meridian t o be used, in radians.
Rem
Rem Outputs:
Rem philambda - A 2-element containing the latitu de and longitude
Rem in radians. VB Mod Replaced with Lat and Lng
Rem
Rem Remarks:
Rem The local variables Nf, nuf2, tf, and tf2 ser ve the same purpose as
Rem N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
Rem to the footpoint latitude phif.
Rem
Rem x1frac, x2frac, x2poly, x3poly, etc. are to e nhance readability and
Rem to optimize computations.
Rem
Dim phif As Double, Nf As Double, Nfpow As Double, nuf2 As Double
Dim ep2 As Double, tf As Double, tf2 As Double, tf4 As Double, cf As Double
Dim x1frac As Double, x2frac As Double, x3frac As D ouble, x4frac As Double
Dim x5frac As Double, x6frac As Double, x7frac As D ouble, x8frac As Double
Dim x2poly As Double, x3poly As Double, x4poly As D ouble
Dim x5poly As Double, x6poly As Double, x7poly As D ouble, x8poly As Double
Dim Tmp1 As Double, Tmp2 As Double, Tmp3 As Double

 'Ge t the value of phif,
 phif = FootpointLatitude(y) 'th e footpoint latitude.
 ep2 = (sm_a ^ 2 - sm_b ^ 2) / sm_b ^ 2 'Pr ecalculate ep2
 cf = Cos(phif) 'Pr ecalculate cos (phif)
 nuf2 = ep2 * cf ^ 2 'Pr ecalculate nuf2
 Nf = sm_a ^ 2 / (sm_b * Sqr(1 + nuf2)) 'Pr ecalculate Nf
 Nfpow = Nf 'in itialize Nfpow
 tf = Tan(phif) 'Pr ecalculate tf
 tf2 = tf * tf: tf4 = tf2 * tf2 'Ta n(phif)**2 , Tan(phif)**4

 Rem Precalculate fractional coefficients for x **n in the equations
 Rem below to simplify the expressions for lati tude and longitude.

 x1frac = 1 / (Nfpow * cf)

 Nfpow = Nfpow * Nf 'no w equals Nf**2
 x2frac = tf / (2 * Nfpow)

 Nfpow = Nfpow * Nf 'no w equals Nf**3
 x3frac = 1 / (6 * Nfpow * cf)

 Nfpow = Nfpow * Nf 'no w equals Nf**4
 x4frac = tf / (24 * Nfpow)

 Nfpow = Nfpow * Nf 'no w equals Nf**5
 x5frac = 1 / (120 * Nfpow * cf)

 Nfpow = Nfpow * Nf 'no w equals Nf**6
 x6frac = tf / (720 * Nfpow)

 Nfpow = Nfpow * Nf 'no w equals Nf**7
 x7frac = 1 / (5040 * Nfpow * cf)

 Nfpow = Nfpow * Nf 'no w equals Nf**8
 x8frac = tf / (40320 * Nfpow)

 Rem Precalculate polynomial coefficients for x* *n.
 Rem -- x**1 does not have a polynomial coeffici ent.

 x2poly = -1 - nuf2
 x3poly = -1 - 2 * tf2 - nuf2
 x4poly = 5 + 3 * tf2 + 6 * nuf2 - 6 * tf2 * nuf 2 - 3 * (nuf2 * nuf2) - 9 * tf2 *
(nuf2 * nuf2)
 x5poly = 5 + 28 * tf2 + 24 * tf4 + 6 * nuf2 + 8 * tf2 * nuf2
 x6poly = -61 - 90 * tf2 - 45 * tf4 - 107 * nuf2 + 162 * tf2 * nuf2
 x7poly = -61 - 662 * tf2 - 1320 * tf4 - 720 * (tf4 * tf2)
 x8poly = 1385 + 3633 * tf2 + 4095 * tf4 + 1575 * (tf4 * tf2)

Page 7

GPS_UTM.bas
 Rem Calculate latitude (was philambda [0])
 Tmp1 = x4frac * x4poly * x ^ 4 'In terim Result
 Tmp2 = x6frac * x6poly * x ^ 6 'In terim Result
 Tmp3 = x8frac * x8poly * x ^ 8 'In terim Result
 Lat = phif + x2frac * x2poly * (x * x) + Tmp1 + Tmp2 + Tmp3

 Rem Calculate longitude (was philambda [1])
 Tmp1 = x3frac * x3poly * x ^ 3
 Tmp2 = x5frac * x5poly * x ^ 5
 Tmp3 = x7frac * x7poly * x ^ 7
 Lng = lambda0 + x1frac * x + Tmp1 + Tmp2 + Tmp2

End Sub

Rem === ====================
Rem The following routine must be called before any UTM conversion
Rem are processed as it initialises then UTM Consta nts.
Rem === ====================

Public Sub SetMajorMinorAxis(AreaSelect As Integer)
Rem Initialise Major/Minor UTM Axis
Rem Constants Information located in document
Rem Steven Dutch Natural and Applied Science (Unive rsity of Wisconsin Green Bay)
Rem Converting UTM to Latitude and Longitude (Or Vi ce Versa)
Rem Initial Design 24/Jun/2013 Author R. J. Spriggs
Dim ecc As Double 'Eccent ricity
Dim ep2 As Double 'Eccent ricity Prime Squared

Rem sm_a is Equatorial Radius in metres
Rem sm_b is Polar Radius in metres

 Select Case AreaSelect
 Case Is = 0 'WSG84 NAD83 Global (Rounded to 4dp)
 sm_a = 6378137 'Ellips oid model major axis.
 sm_b = 6356752.3142 'Ellips oid model minor axis.

 Case Is = 1 'GRS80 US (Rounded to 4dp)
 sm_a = 6378137 'Ellips oid model major axis.
 sm_b = 6356752.3141 'Ellips oid model minor axis.

 Case Is = 2 'WSG72 NASA DOD
 sm_a = 6378135 'Ellips oid model major axis.
 sm_b = 6356750.5 'Ellips oid model minor axis.

 Case Is = 3 'Austra lia 1965
 sm_a = 6378160 'Ellips oid model major axis.
 sm_b = 6356774.7 'Ellips oid model minor axis.

 Case Is = 4 'Krasov sky 1940 Soviet Union
 sm_a = 6378245 'Ellips oid model major axis.
 sm_b = 6356863 'Ellips oid model minor axis.

 Case Is = 5 'Intern ational (1924)-Hayford (1909) (global)
 sm_a = 6378388 'Ellips oid model major axis.
 sm_b = 6356911.9 'Ellips oid model minor axis.

 Case Is = 6 'Clark 1880 France Africa
 sm_a = 6378249.1 'Ellips oid model major axis.
 sm_b = 6356514.9 'Ellips oid model minor axis.

 Case Is = 7 'Clark 1866 North America
 sm_a = 6378206.4 'Ellips oid model major axis.
 sm_b = 6356583.8 'Ellips oid model minor axis.

 Case Is = 8 'Airy 1 830 Great Britian
 sm_a = 6377563.4 'Ellips oid model major axis.

Page 8

GPS_UTM.bas
 sm_b = 6356256.9 'Ellips oid model minor axis.

 Case Is = 9 'Bessel 1841 Central Europe Chilie Indonesia
 sm_a = 6377397.2 'Ellips oid model major axis.
 sm_b = 6356079 'Ellips oid model minor axis.

 Case Is = 10 'Everes t 1830 South Asia
 sm_a = 6377276.3 'Ellips oid model major axis.
 sm_b = 6356075.4 'Ellips oid model minor axis.

 Case Else 'Defaul t WSG84 (Rounded to 3dp)
 sm_a = 6378137 'Ellips oid model major axis.
 sm_b = 6356752.314 'Ellips oid model minor axis.
 End Select

 'ecc = Sqr(1 - (sm_b ^ 2 / sm_a ^ 2)) 'Calcu late eccentricity
 'ep2 = ecc ^ 2 / (1 - ecc ^ 2) 'e pri me squared

 Rem sm_EccSquared = 0.00669437999013 'Never used
 UTMScaleFactor = 0.9996 'A UTM default Constant
End Sub

Page 9

